23 November 2008

Mekanisme Kerja Bakteri Pseudomonas sp. dalam Proses Bioremediasi Minyak Bumi

Pencemaran lingkungan oleh hidrokarbon minyak bumi terus mengalami peningkatan dan telah menimbulkan dampak yang berarti bagi makhluk hidup. Bioremediasi adalah salah satu upaya untuk mengurangi polutan tersebut dengan bantuan organisme. Biodegradasi senyawa hidrokarbon dari minyak bumi ini dapat dilakukan oleh mikroorganisme, salah satunya adalah bakteri Pseudomonas sp.

Bakteri Pseudomonas sp. merupakan bakteri hidrokarbonoklastik yang mampu mendegradasi berbagai jenis hidrokarbon. Keberhasilan penggunaan bakteri Pseudomonas dalam upaya bioremediasi lingkungan akibat pencemaran minyak bumi. Bahan utama minyak bumi adalah hidrokarbon alifatik dan aromatik. Selain itu, minyak bumi juga mengandung senyawa nitrogen antara 0-0,5%, belerang 0-6%, dan oksigen 0-3,5%.

Terdapat sedikitnya empat seri hidrokarbon yang terkandung di dalam minyak bumi, yaitu seri n-paraffin (n-alkana) yang terdiri atas metana (CH4) sampai aspal yang memiliki atom karbon (C) lebih dari 25 pada rantainya, seri iso-paraffin (isoalkana) yang terdapat hanya sedikit dalam minyak bumi, seri neptena (sikloalkana) yang merupakan komponen kedua terbanyak setelah n-alkana, dan seri aromatik (benzenoid). Oleh karena itu, akan dijelaskan mengenai mekanisme kerja bakteri Pseudomonas sp. dalam proses bioremediasi pada pencemaran minyak bumi.

Bakteri pseudomonas yang umum digunakan antara lain : Pseudomonas aeruginosa, Pseudomonas stutzeri, Pseudomonas diminuta.

Salah satu factor yang sering membatasi kemampuan bakteri pseudomonas dalam mendegradasi senyawa hidrokarbon adalah sifat kelarutannya yang rendah, sehingga sulit mencapai sel bakteri. Oleh karena itu, untungnya, bakteri pseudomonas dapat memproduksi biosurfaktan. Kemampuan bakteri Pseudomonas dalam memproduksi biosurfaktan berkaitan dengan keberadaan enzim regulatori yang berperan dalam sintesis biosurfaktan. Ada 2 macam biosurfaktan yang dihasilkan bakteri Pseudomonas :

  1. Surfaktan dengan berat molekul rendah (seperti glikolipid, soforolipid, trehalosalipid, asam lemak dan fosfolipid) yang terdiri dari molekul hidrofobik dan hidrofilik. Kelompok ini bersifat aktif permukaan, ditandai dengan adanya penurunan tegangan permukaan medium cair.
  2. Polimer dengan berat molekul besar, yang dikenal dengan bioemulsifier polisakarida amfifatik. Dalam medium cair, bioemulsifier ini mempengaruhi pembentukan emulsi serta kestabilannya dan tidak selalu menunjukkan penurunan tegangan permukaan medium.

Biosurfaktan merupakan komponen mikroorganisme yang terdiri atas molekul hidrofobik dan hidrofilik, yang mampu mengikat molekul hidrokarbon tidak larut air dan mampu menurunkan tegangan permukaan. Selain itu biosurfaktan secara ekstraseluler menyebabkan emulsifikasi hidrokarbon sehingga mudah untuk didegradasi oleh bakteri. Biosurfaktan meningkatkan ketersediaan substrat yang tidak larut melalui beberapa mekanisme. Dengan adanya biosurfaktan, substrat yang berupa cairan akan teremulsi dibentuk menjadi misel-misel, dan menyebarkannya ke permukaan sel bakteri. Substrat yang padat dipecah oleh biosurfaktan, sehingga lebih mudah masuk ke dalam sel.

Pelepasan biosurfaktan ini tergantung dari substrat hidrokarbon yang ada. Ada substrat (misal seperti pada pelumas) yang menyebabkan biosurfaktan hanya melekat pada permukaan membran sel, namun tidak diekskresikan ke dalam medium. Namun, ada beberapa substrat hidrokarbon (misal heksadekan) yang menyebabkan biosurfaktan juga dilepaskan ke dalam medium. Hal ini terjadi karena heksadekan menyebabkan sel bakteri lebih bersifat hidrofobik. Oleh karena itu, senyawa hidrokarbon pada komponen permukaan sel yang hidrofobik itu dapat menyebabkan sel tersebut kehilangan integritas struktural selnya sehingga melepaskan biosurfaktan untuk membran sel itu sendiri dan juga melepaskannya ke dalam medium.

Terdapat tiga cara transpor hidrokarbon ke dalam sel bakteri secara umum yaitu :

  1. Interaksi sel dengan hidrokarbon yang terlarut dalam fase air. Pada kasus ini, umumnya rata-rata kelarutan hidrokarbon oleh proses fisika sangat rendah sehingga tidak dapat mendukung.
  2. Kontak langsung (perlekatan) sel dengan permukaan tetesan hidrokarbon yang lebih besar daripada sel mikroba. Pada kasus yang kedua ini, perlekatan dapat terjadi karena sel bakteri bersifat hidrofobik. Sel mikroba melekat pada permukaan tetesan hidrokarbon yang lebih besar daripada sel dan pengambilan substrat dilakukan dengan difusi atau transpor aktif. Perlekatan ini terjadi karena adanya biosurfaktan pada membrane sel bakteri Pseudomonas.
  3. Interaksi sel dengan tetesan hidrokarbon yang telah teremulsi atau tersolubilisasi oleh bakteri. Pada kasus ini sel mikroba berinteraksi dengan partikel hidrokarbon yang lebih kecil daripada sel. Hidrokarbon dapat teremulsi dan tersolubilisasi dengan adanya biosurfaktan yang dilepaskan oleh bakteri pseudomonas ke dalam medium.

 

Mekanisme degradasi hidrokarbon di dalam sel bakteri Pseudomonas

  1. Hidrokarbon Alifatik

Pseudomonas sp. menggunakan hidrokarbon tersebut untuk pertumbuhannya. Penggunaan hidrokarbon alifatik jenuh merupakan proses aerobik (menggunakan oksigen). Tanpa adanya O2, hidrokarbon ini tidak didegradasi. Langkah pendegradasian hidrokarbon alifatik jenuh oleh Pseudomonas sp. meliputi oksidasi molekuler (O2) sebagai sumber reaktan dan penggabungan satu atom oksigen ke dalam hidrokarbon teroksidasi. Reaksi lengkap dalam proses ini terlihat pada gambar 1.

 

degradasiHA_small
Gambar 1. Reaksi degradasi hidrokarbon alifatik

  1. Hidrokarbon Aromatik

Banyak senyawa ini digunakan sebagai donor elektron secara aerobik oleh bakteri Pseudomonas. Degradasi senyawa hidrokarbon aromatik disandikan dalam plasmid atau kromosom oleh gen xy/E. Gen ini berperan dalam produksi enzim katekol 2,3-dioksigenase. Metabolisme senyawa ini oleh bakteri diawali dengan pembentukan Protocatechuate atau catechol atau senyawa yang secara struktur berhubungan dengan senyawa ini. Kedua senyawa ini selanjutnya didegradasi oleh enzim katekol 2,3-dioksigenase menjadi senyawa yang dapat masuk ke dalam siklus Krebs (siklus asam sitrat), yaitu suksinat, asetil KoA, dan piruvat. Gambar 2 menunjukkan reaksi perubahan senyawa benzena menjadi katekol.

degradasiHAr
Gambar 2. Reaksi degradasi hidrokarbon aromatik

Tidak ada komentar: